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Magnetic properties of polychromatic crystals: 
some theoretical results 
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Received 2 5  March 1986 

Abstract. The magnetic properties of crystals possessing the symmetry of the 18 polychro- 
matic ( 3 ,  4 and 6 coloured) point groups, whose diagrammatic representation was given 
by Indenbom et a / ,  have been studied and the maximum number of independent constants 
required to describe each of the chosen magnetic properties are enumerated. The existence 
of the non-vanishing number of independent constants which emerges as a result of this 
theoretical study-a physical significance for the number of indzpendent constants required 
to describe a magnetic or physical property and appearing before an irreducible representa- 
tion p of the factor group G / H  established in the process-suggests investigation by 
experimental physicists to identify the crystals possessing the symmetry of these polychro- 
matic groups. The results of this study are briefly discussed and summarised. 

1. Introduction 

It is well known that, though the application of an ordinary symmetry operation on 
an arrangement of atoms in a point group brings the geometrical structure into 
coincidence with itself, it may happen that the orientations of some or all of the atomic 
magnetic moments (spins) might be reversed. In such a case, a further reversal of the 
affected spins must follow the usual symmetry operation in order to bring the 
geometrical structure, together with the spins, into complete coincidence with itself. 
It is in this context that the time reversal (anti-identity) operation R2 has been introduced 
to effect the reversal of spins. The introduction of this new operation R ,  increased 
the number of point groups from 32 to 122 which were broadly divided into three 
categories-those groups which do not contain R 2  (the 32 ordinary point groups), 
those which include R2 explicitly (the 32 grey groups) and those which do  not contain 
R2 explicitly but contain at least one complementary symmetry operation (Zheludev 
1960) usually referred to as the 58 magnetic point groups. 

The interpretation of antisymmetry as two-colour symmetry led to the idea of 
polychromatic symmetry (Belov and Tarkhova 1956). Consequently Indenbom er a1 
(1960) derived the 18 polychromatic point groups by introducing the colour changing 
operation R,, n = 3, 4 or 6 with R :  = E, and associated those obtained with the 18 
pairs of one-dimensional ( I D )  complex irreducible representations ( IR) of the crystallo- 
graphic point groups. 

t Presently Junior Associate at ICTP, Trieste, Italy. 
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Zamorzaev’s ( 1967) innovative work on quasisymmetry ( P-symmetry) groups 
embraced all the earlier important phenomena of antisymmetry, colour symmetry and 
cryptosymmetry (Niggli and Wondratschek 1960). The 58 magnetic and 18 polychro- 
matic point groups were shown, with the help of the fundamental quasisymmetry 
theorem, to be full P-symmetry minor groups with appropriate crystallographic point 
groups as generators and suitable permutation (cyclic) groups of order 2, 3, 4 or 6 as 
the group of indices P. A general method of obtaining these different categories of 
P-symmetry groups as semidirect products was established by Krishnamurty et al 
(1978) where a novel method of associating all the obtained colour symmetry groups 
with the I R  of the generator groups was also suggested employing the idea of allowable 
irreducible representations ( A I R )  of the little groups that induce the respective I R  of 
the generator group. Very recently, the idea of composition series that exist among 
the 32 crystallographic point groups (Lomont 1959) has been explored by this author 
(Rama Mohana Rao 1985) to bring a host of the earlier results (in respect of the 
derivation of all the different colour symmetry point groups) onto a common footing 
by constructing 37 composition series, needed just to generate all the 106 colour 
symmetry point groups. 

The study of the magnetic and physical properties exhibited by the 90 magnetic 
classes was profitably undertaken in the crystallographic point group and space group 
studies by several investigators. The character method developed by Bhagavantam 
(1942) was successfully applied by Bhagavantam and Pantulu (1964) and Bhagavantam 
(1966) for enumerating the number of independent constants needed for the description 
of any magnetic property by the 90 magnetic classes. Jahn (1949), Juretschke (1951), 
Fumi (1952a, b) and Koptsik (1966) have also made notable contributions to the 
methods of enumeration of physical constants required to describe the various physical 
properties. A simple and elegant method, based on the group theoretical concept of 
the factor groups contained in a composition series, of obtaining simultaneously the 
number of independent constants required to describe a chosen magnetic property by 
a crystallographic point group and its magnetic variant (if any) was described by 
Krishnamurty et al (1977) with the help of the I R  of the factor groups contained in a 
composition series and through defining the character of a coset. 

The polychromatic structure, and hence the polychromatic point groups and space 
groups, have a useful role to play in many physical applications such as the derivation 
and description of similarity symmetry point groups and space groups, in the description 
of stem and layer symmetry groups in higher-dimensional space and in describing the 
magnetic symmetry of screw (helicoidal) structures, the periods of which do not 
coincide with the periods of the atomic structures and where the traditional magnetic 
groups cannot adequately describe the situation (Naish 1963), etc. 

In spite of the usefulness of these polychromatic point groups in various applica- 
tions, the study of the magnetic properties exhibited by the crystal classes possessing 
the symmetry of these polychromatic groups has not been carried out as far as the 
author is aware. The possible stationary magnetic moment configurations in crystals 
cannot be described by the classical and magnetic point groups (Shubnikov groups). 
On the other hand, the polychromatic and multicolour group apparatus of the P- 
symmetry structure alone can adequately cover all the aforesaid phenomena, a concrete 
example of which was provided by Koptsik and Kuzhukeev (1972) with the help of 
the antiferromagnetic structure of haematite in the range of 253 < T < 948 K. 

A study of the magnetic properties pertaining to the ten crystallographic point 
groups that generate the 18 polychromatic point groups has already been covered 
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during the study of the 90 magnetic classes and is available in the literature. So the 
objective of the present paper is to study these 18 applicationally important polychro- 
matic point groups whose possible geometric configuration was provided by Indenbom 
et a/ (1960) and  Bradley and  Cracknell (1972) with a view to enumerating the number 
of independent constants (if they exist) that are required to describe the three magnetic 
properties. 

In  D 2, the three magnetic properties that are usually exhibited by the crystals, 
together with their computed characters, are briefly presented for the sake of complete- 
ness. In  § 3, the physical significance of the number of constants required to describe 
a chosen magnetic property and  occurring before an I R  of the factor group G / H ,  and 
those occurring before the total symmetric I R  of the variant induced by G ,  is established 
through three results. The procedure for obtaining the number of independent constants 
required to describe a particular magnetic property by the 18 polychromatic variants 
is explained in respect of piezomagnetism in § 4 and is illustrated for the point groups 
3, 4 and 6. The results obtained for the rest of the classes are tabulated (table 2) for 
all the properties. The nomenclature adopted for the point groups in this paper is that 
of the Hermann-Mauguin (International) notation and that of the 18 polychromatic 
classes is due to Indenbom et a1 (1960). 

!n § 5, the results obtained are discussed briefly. Some suggestions have been made 
as to the possible studies in which the polychromatic classes that are taken up  for the 
present study are useful. The necessity to invoke these groups in order to describe 
certain physical situations and phenomena is exemplified. 

The occurrence of the non-vanishing number of constants in respect of the three 
magnetic properties discussed and enumerated for the 18 polychromatic classes in this 
paper suggests investigations and verification by experimental physicists to find the 
class of crystals that bear and describe this envisaged symmetry accurately. 

2. The three magnetic properties 

It has already been established by Bhagavantam and Venkatarayudu (1951) and 
Bhagavantam ( 1966) that the physical properties of substances generally represent the 
relationship between two quantities, each of which may be a scalar, vector or a 
symmetric tensor of second rank, etc. A physical property is referred to as a magnetic 
property if one or both of the intersecting physical quantities involve the magnetic 
field, magnetic induction or magnetic moment as a part thereof. Before the contem- 
plated study is undertaken, let us recall in brief the essential concepts of the three 
important known magnetic properties usually exhibited by a certain class of crystals: 
( i )  piezomagnetism, (ii) pyromagnetism and (iii) magnetoelectric polarisability 

( i )  Piezomagnetism is the appearance of a magnetic moment M ( M ,  = 1 , 2 , 3 )  on 
the application of stress cr. Whereas Tavger (1958), Dzyaloshinskii (1958) and Landau 
and Lifshitz (1960) have predicted theoretically its existance in magnetic crystals, its 
occurrence has been experimentally verified and meascred in crystals by Borovik- 
Romanov (1959) in fluorides of cobalt and  manganese in the antiferromagnetic state. 

( i i )  Pyromagnetism is the appearance of a magnetic moment M (  M , ,  i = 1 , 2 , 3 )  on 
the application of temperature t .  The relation between the axial vector M and t can 
be represented by 

M ,  = a,t i = 1 , 2 ,  3 (2.1) 
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where a, stands for the pyromagnetic tensor that transforms like Mi. The magnetic 
classes exhibiting this phenomena were identified in certain ferromagnetic classes by 
Tavger (1958). 

(iii) Magnetoelectric polarisability is the production of a magnetic field B (or  E )  
on the application of an  electric field E (or B )  in a direction normal to it. If A,, stands 
for a second rank tensor representing the magnetoelectric polarisability, then E and 
B are connected by the relation 

B, = Ai,Ej i, j = 1 ,2 ,3  
i 

with the transformation law of A being taken the same as the product of the representa- 
tions of E and B. The occurrence of this phenomenon was observed and verified by 
Astrov (1960) and  Al’shin and  Astrov (1963) in trioxides of chromium and titanium. 

The character ,y(R,) corresponding to a symmetry element R, in the representation 
is given in terms of these three properties by 

X a ( R , )  = (4 cos? 4 * 2  cos 4 ) ( 1 * 2  cos 4)  (2.3) 

x b ( R , ) = 1 * 2 ~ 0 ~ 4  (2.4) 

,yc(R,) = (1 *2  COS 4 ) (*1+2  cos 4)  ( 2 . 5 )  

where the positive or negative signs are to be taken according to whether R, is a pure 
rotation or a rotation-reflection through an angle 4. 

3. The significance of the constants 

In what follows, we establish an  important result pertaining to the equality of the 
number of constants required to describe a magnetic (or physical) property and  
occurring before an  I R  p of a factor group G/H and that number required by the 
corresponding variant of G induced by the I R  A of G for the same property under 
consideration, where A of G is engendered by the I R  p of G/H.  To this end we invoke 
the definition of the character of a coset introduced by Krishnamurty er a1 (1977) and  
prove the following two theorems. 

Dejinition. For any magnetic or physical property, the character of a coset A,H, where 
A, E (G\H) ,  in the factor group G/H, is defined as the algebraic sum of the characters 
of all those elements of the group G that are contained in the coset A,H in respect 
of that property divided by the order of the coset. 

Theorem 3.1. Let p be an I R  of G/H that engender the I R  A of G .  Then the number 
of times the I R  A of G is contained in the representation for G provided by a physical 
property is equal to the number of times the I R  p of G / H  is contained in the 
representation for G /  H provided by the same physical property. 

ProoJ Let 4(  R )  denote the character provided by the physical property for an element 
R of the group G. Let x ( ~ ’ ( R )  denote the character of the same element R of the 
group G in the I R  A of G. Then by a known property 

(3.1) 
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where g is the order of the group G. If R E R,H, say R = R,hJ, h, E H, then since CL is 
the I R  of G/H which engenders the I R  A of G, one obtains 

x ( * ) ( R )  = x ( @ ) ( R , H ) .  (3.2) 
From the definition of the character of a coset introduced earlier, if (P(R,H) denotes 
the character of the coset R,H provided by the chosen physical property, then 

@(R,H) = ( l / h )  c 4(R,h,) 
h,EH 

since R = R,h,. 
Therefore 

(3.3) 

Hence the theorem. 

Theorem 3.2. The number of independent constants required to describe a magnetic 
property and appearing before a I D  complex I R  of a crystallographic point group G 
is equal to the number of magnetic constants needed by the polychromatic variant of 
G, which is induced by that I D  complex representation of G. 

Proof: It has already been established that the method of finding the number of 
non-vanishing independent constants necessary to describe a magnetic (physical) 
property of a crystal amounts to obtaining the number ni that appears before the total 
symmetric I R  of the point group G of order g of the crystal for the same property, 
following the formula (Bhagavantam and Venkatarayudu 1951) 

In equation (3.5) hp is the number of elements in the pth conjugate class, g is the total 
number of elements of the group G, x:” is the character of the pth conjugate class in 
the representation and ,y:’i’ is the character of the pth conjugate class in the ith 
irreducible representation Ti of G. 

Theorem 3.2 is now established in the light of formula (3.5) with the help of the 
point group 4. It has already been shown (Rama Mohana Rao 1985) that any one of 
the I R  ’E or *E of the point group 4 induce the polychromatic group 4‘4’ and that the 
polychromatic group induced by ‘E and *E of 4 are physically equivalent. The 
polychromatic group 4‘4’ consists of elements E, R4CiZ, R:Clz, R:C, and the number 
of constants needed to describe a magnetic property for this variant can be obtained 
from (3.5) by takingXg‘n’(R) = IVR E G which is the characteristic ofthe total symmetric 
I R  of the polychromatic variant. 
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Since the polychromatic point group is isomorphic to the point group under 
consideration, the order of the various conjugate classes in these two groups are the 
same. Also it was conceived that a complementary symmetry operation R ,  (Zheludev 
1960) has the same effect as that of R, but multiplied by -1 as the former reverses 
the character of a physical property (Indenbom 1960). In an analogous manner, if we 
contend here that the character of a symmetry operation R,,R,(RZ = E )  will be the 
same as that of the character of R ,  but multiplied by the nth root of unity, then the 
n, in respect of a magnetic property for the total symmetric I R  T of the polychromatic 
variant 4'4', for which hp = 1Vp and N =4, is given from (3.5) by 

n i P C G ) T = a c  Xb'" 
P 

= a[x" ' (E )+Xi '  ' (R ,C, f , )+X1 ' ) (R~CZ;)+X1 '  ' (RiCi2)]  

=a[x" ' ( E ) + i x " ' ( C ~ z ) -  1 ~ "  ' ( C z 2 ) - i ~ " ) ( C i z ) ] .  (3.6) 

But 1, i, -1, -i are respectively the characters of the symmetry operations E, C&, CZzr 
C i Z  in the I R  'E of the point group 4 which induces the polychromatic variant 4'4'. 

Hence the value of n,pCG,r given by equation (3.6) can be expressed as 

(3.7) 

From (3.6) and (3.7) 

n(PCG)T= n ( ' E J .  (3.8) 

A similar result can be established in terms of any other polychromatic group generated 
by the 10 point groups containing complex I R .  

The converse of this above result can also be inferred from the fact that there exists 
a one-to-one correspondence between the polychromatic group induced by a point 
group G and the pair of I D  complex I R  of G that induce it. Thus it may be concluded 
that the number of independent constants required for the description of a magnetic 
property in terms of a polychromatic class generated by G can be obtained directly 
from one of the I D  complex I R  of G that induce the polychromatic group. Combining 
this with the result (3.1) established above, we obtain the following theorem. 

Theorem 3.3. The number of independent constants required to describe a magnetic 
property and appearing before an I R  p of G/H is equal to the number of independent 
constants required by the corresponding colour group of G induced by the I R  A of G, 
where the I R  A of G is engendered by the I R  p of G/H.  

4. Magnetic constants of the polychromatic classes 

Indenbom et al (1960) derived the 3-coloured, 4-coloured and 6-coloured point groups 
(with R,, n = 3 ,  4 or 6 3 R i  = E) using the 10 point groups containing the I D  complex 
I R  as generators. By associating the colour changing operations R 3 ,  R4 and R6 with 
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the complex numbers w = e x p ( 2 ~ i / 3 ) ,  i = exp(2+/4)and -U* = e x p ( 2 ~ i / 6 ) ,  these 
authors have shown that the two polychromatic groups associated with the pair of I D  

complex representations are mutually isomorphic and thus there are in all 18 polychro- 
matic classes generated by the point groups. These authors also suggested possible 
diagramatic (geometric) representations for each of the 18 polychromatic point groups, 
the respective symmetry elements of each of which are provided in table 1 for the sake 
of reference. 

In this section, the magnetic constants of these 18 polychromatic classes, together 
with the constants required by their generating point groups, are obtained by consider- 
ing the I R  of the appropriate factor groups G/H with the 10 point groups containing 
the I D  complex IR. The desired constants are obtained by invoking the definition of 
the character of the coset and utilising the formula (3.5) and also the results established 
in 0 3 (3.1)-(3.3), 

To cover the different cases we consider the groups 3'3', 4'4', and 6'"/2 for the 
magnetic property say, piezomagnetism, the character for which is given by equation 
(2.1): 

x;"( R ) = (4 cos' 4 * 2 cos @)(  1 * 2 cos 4) 
with the usual notation as explained earlier. The method of enumerating the piezomag- 
netic constants is explained below. 

Table 1. The 18 polychromatic point groups. In column 2 ,  the 18 polychromatic crystal 
classes are given in the standard notation as given by Indenbom er al (1960) and Rama 
Mohana Rao (1985). In column 3, the 10 crystallographic point groups that generate the 
18 polychromatic classes are given in international notation and in column 4 the symmetry 
elements of the respective polychromatic class are provided. For numbers 16, 17 and 18 
the subscript m takes the values, x, y and z and the subscript j takes the values 1, 2, 3 
and 4. 

Serial 
number C G Elements 

1 

8 
9 

10 

11 
12 
13 
14 
15 
16 
17 
18 

6 
3 
31 m 
6 
J 
31 m 
61 m 

3 
4 
a 
4/ m 
41 m 
23 
m3 
m3 
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It can be seen that the point group 1 requires 18 piezomagnetic constants and the 
character table of the factor group 3/ 1 = 3 is given by 

31 1 E c: c; n, 

A 1 1 1 6 
IE 1 w w 2  6 
2 E  1 w 2  w 6 

18 0 0 

Using formula (3.5), one finds that the point group 3 and its polychromatic variant 
3'3', which are induced respectively by the IR A and 'E of the factor group 3 /1 ,  require 
6 and 6 piezomagnetic constants, respectively. 

Similarly for the group 4'4' consider the factor group 4/ 1 = 4: 

41 1 E c:: c2; cy: n, 

A' 1 1 1 1 4 

I 5 
B 1 -1 1 

- 1  -1 
I 5 

I E' 1 
2E' 1 -1 --I 

-1 

XY' 18 0 -2 0 

Following the theorem 3.3, it can be inferred that the point group 4 and its polychromatic 
variant 4(4) require 4 and 5 piezomagnetic constants respectively. 

To obtain the constants for the polychromatic variant 6'3'/2 and for the point group 
6, consider the normal subgroup 2 of the point group 6 and the factor group 6/2. 
Since 2 is a subgroup of index 3-6, the group 6 can be written as the union of the cosets 

6 =  E 2 u C :  2 u  C; 2. 

Therefore the character table of 6/2 = 3 is given by 

61 2 2 c;2 c;2 n, 

A" 1 1 1 4 
1 w w 2  2 I E" 

1 w 2  w 2 ZE" 

8 2 2 (1'1 
X P  

It has already been observed (Bhagavantam 1966, Krishnamurty et a1 1977) that 
the point group 2 requires 8 piezomagnetic constants. So we take 8 as the character 
of the identity element in 6/2. The coset C: 2 contains the elements C: and C, and 
the character of each of these elements in respect of piezomagnetism is zero and four, 
respectively. Hence from the definition of the character of the coset introduced earlier, 
the character of C: 2 is two. Following a similar argument, it can be shown that the 
character of the coset C; 2 is also two. Hence substitution in equation (3 .5)  shows 
that the point group 6 and its polychromatic variant 6(3)  requires 4 and 2 piezomagnetic 
constants, respectively. Similarly, considering the factor group 6 /  1, one can find that 
4 piezomagnetic constants are required for the group 6'6'. 

This method can be extended in fact to the rest of the seven point groups that 
induce the remaining 14 polychromatic variants by suitably choosing the normal 
subgroup and forming the appropriate factor groups. The number of piezomagnetic 
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Table 2. Number of constants required to describe the three magnetic properties by the 
18 polychromatic classes. 

Number of magnetic constants needed 
to describe 

Serial Polychromatic Magneto electric 
number class Piezomagnetism Pyromagnetism polarisability 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1  
12 
13 
14 
15 
16 
17 
18 

4 
0 
4 
2 
6 
2 
0 
2 
4 
0 
6 
5 
5 
0 
5 
1 
1 
0 

1 
0 
1 
0 
1 
0 
0 
0 
1 
0 
1 
1 
1 
0 
1 
0 
0 
0 

2 
3 
1 
1 
0 
2 
2 
0 
0 
1 
3 
2 
2 

0 
1 
0 
1 

7 

constants required for each of the polychromatic classes (that may exist) are enumerated 
and tabulated in table 2 .  A similar procedure can be adopted to find the constants 
needed to describe the other two magnetic properties in respect of these 10 point 
groups and their 18 polychromatic classes. As the results pertaining to the 10 generating 
point groups obtained here are available in the literature, the corresponding results 
for the 18 polychromatic classes are enumerated and tabulated in table 2 as well. 

5. Discussion 

In this paper the magnetic properties of the different crystal classes that can adequately 
describe the symmetry of the 18 polychromatic point groups have been investigated 
and the number of independent constants required are enumerated in terms of the 
three chosen magnetic properties. 

The 18 polychromatic point groups associated with the 18 pairs of I D  complex 
representations are nothing but the colour symmetry point groups (with colour value 
3 , 4  or 6) in which each colour may represent a transformable physical property. These 
groups can also be viewed as the minor quasisymmetry (P-symmetry) point groups, 
by finding subgroups of index 3 , 4  or 6, to the generating crystallographic point groups 
containing I D  complex IR, and by restricting P = { p ,  p 2 ,  . . . , p"' = l}  with m = 3, 4 or 
6 where 
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The utility of the colour symmetry groups in the derivation and description of 
similarity symmetry groups has already been explored and the usefulness of the idea 
of P symmetry in the description of stem and layer symmetry groups in higher- 
dimensional space is already appreciated (Zamorzaev 1963, Roman 1959). 

By the method outlined here, the constants needed to describe a physical property 
for all the 18 point groups containing the I D  complex I R  and the polychromatic variants 
generated by them can be obtained simultaneously. They need not be calculated 
separately. 

The idea of factor groups occurring for different normal subgroups H for a generator 
group G can be utilised for the enumeration of magnetic constants in respect of the 
10 point groups containing I D  complex I R  and  the 18 polychromatic classes generated 
by them for all the three magnetic properties. 

It can be noted that, in general, the character of the coset A , H ,  as defined earlier 
by Krishnamurty er a1 (1977) and utilised here for a chosen magnetic property in the 
appropriate factor group G/H,  may not be equal to that of the element A ,  and its 
value should not numerically exceed that of H .  

An example of physical applications of the colour symmetry groups is that of the 
magnetic symmetry proposed by Naish (1963). The multiplicative groups constructed 
by Naish are nothing but the P-symmetry groups. In  describing the magnetic symmetry 
of screw (helicoidal) structures, the periods of which d o  not coincide with the periods 
of the atomic structures, the traditional magnetic groups (Shubnikov groups) are not 
suitable and  these polychromatic and multi-colour groups are found to be very useful. 

In the light of the results established in this paper on well founded theoretical 
grounds, we suggest that experimental physicists working in the area of magnetic 
structures conduct investigations with a view to identifying the possible crystals that 
exhibit these magnetic properties and which possess the geometric configuration 
indicated by Indenbom er a1 (1960). That the n, are non-zero is a positive result 
produced by the present study and we believe is enough to stimulate such experimental 
investigation to identify these crystals. 
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